(a) order 3
 (b) linear

2) (a)

$$f(x) = cx^{4}$$

$$f'(x) = 4cx^{3}$$

$$xf'(x) - 4f(x) = x(4cx^{3}) - 4(cx^{4})$$

$$= 4cx^{4} - 4cx^{4}$$

$$= 0$$
(b) $f(x) = cx^{4}$ solves $xy' - 4y = 0$.
Need $f(z) = 4$.
Plug in to get: $4 = c(z)^{4}$
 $4 = 16c$
 $c = \frac{1}{4}$
Thus, $f(x) = \frac{1}{4}x^{4}$ solves the initial value problem.

3)
$$y'=2xy$$

 $f(x,y)=2xy$
 $\frac{\partial f}{\partial y}=2x$
Both f and $\frac{\partial f}{\partial y}$ are continuous on the
entire xy -plane. Let R be the
 xy -plane. Since $(0,0)$ is in R
by Picned's theorem there
 $exists a unique solution to$
 $y'=2xy$
 $y(o)=0$
On some interval
I containing $x=0$.

(4) Multiply
$$x^{2}y' + xy = 1$$
 by $\frac{1}{x^{2}}$ to get
 $y' + \frac{1}{x}y = \frac{1}{x^{2}}$. (*)
Let $A(x) = \int \frac{1}{x} dx = \ln |x| = \ln (x)$
 $x > 0$
Multiply both sides of (*) by
 $e^{A(x)} = e^{\ln (x)} = x$ to get
 $xy' + y = \frac{1}{x}$

This gives
$$(xy)' = \frac{1}{x}$$

So, $xy = \int \frac{1}{x} dx$

So,

$$xy = \ln |x| + C$$

 $\ln |x| = \ln (x)$
 $\sin (x + z)$
 $y = \frac{1}{x} \ln (x) + \frac{C}{x}$

6 See HW 5 #1(b)